Next Generation VESTAKEEP® PEEK

Mahrokh D, Andrew W, Subhadip B, Harsh P, Suneel B, Jonas S, Thomas P, Ken R, Kyle M, Simon T, Marc K

Balaji Prabhu

Medical Device Competence Center (MDCC)

PEEK Meeting Washington DC 25 April 2019

MICROSTRUCTURE **CYTOTOXICITY** APATITE **CELL CULTURE** SHEEP STUDY

VESTAKEEP[®] PEEK for Improved Osteoconductivity

VESTAKEEP[®] (VIRGIN)	VESTAKEEP [®] COMPOSITE A	VESTAKEEP [®] COMPOSITE B	VESTAKEEP [®] COMPOSITE C	
 2015/11/25 15:51 NL D4.1 x500 200 µm		OsteoPEEK0004 2016/02/03 10:57 NL D6.2 x2.0k 30 µm	ТD13M-0019 2017/03/17 14:57 NL D5:3 x2.0k 30 µm	
Microstructure	Homogenous	Homogenous	Homogenous	
	. 00 0/1		. 10.0/	
Elongation at Break	< 20 %*	> 40%	> 40 %	
Liongation at Break Injection Molding	< 20 %*	> 40%	> 40 %	
Liongation at Break Injection Molding Machining	< 20 %*	> 40%	> 40 %	
Elongation at Break Injection Molding Machining 3D Printability (FFF)	< 20 %*	> 40%	> 40 %	
Elongation at Break Injection Molding Machining 3D Printability (FFF) ISO 10993-5 (Cytotoxicity)*	< 20 %*	> 40%	> 40 %	

t generation PEEK + Calcium phosphate (FDA approved) compositions provide 'Improved bone-on-growth' & 'Superior Mechanical properties' -Versatile Platform for Conventional molding, Extrusion, Machining and also 3D printing

*MC3T3 cell culture

Mechanical Property: Tensile

Mechanical Property: Tensile

Mechanical Property: Flexural & Impact Strength

Superior Flexural and impact properties even with significant additive % and without any agglomeration

Invitro study: Apatite formation in simulated body fluid solution

METHOD 10x10x2mm submersed at 37°C in SBF: SBF: NaCl, NaHCO3, Na2HPO4.2H2O CaCl2HCL Apatite crystals evaluated at 0, 7, 14, and 28 days via SEM and XRD

6 | Public | April 2019 | PEEK Conference 2019 | BP, MD, AW, SB, MDCC-HPP

In-vitro study: ISO 10993-5: Cytotoxicity

Identification	Results (Pass/Fail)	Scores			
identification		1	2	3	Average
Virgin	Pass	0	0	0	0
Composite A	Pass	0	0	0	0
Composite B	Pass	0	0	0	0
Composite C	Pass	0	0	0	0
(-Ve) Control – Polypropylene Pellets		0	0	0	0
(+Ve) Control – Latex Natural Rubber		4	4	4	4
Media Control		0	0	0	0

Virgin PEEK and PEEK composites – Both PASS cytotoxicity

METHOD: Polymer Extracted in (MEM) 72 h at 37 °C After 72 cell, media is filtered, added to cell monolayers L-929 (mouse fibroblasts) in the tissue culture plates in triplicate and incubated for additional 24 h. Cells are examined and scored wrt +ve and –ve controls

In-vitro: Cell Culture Studies (Day 1)

POWER TO CREATE

In-vivo Study: Sheep Study

- 20 Sheep (Suffolk Crossbred Female 3yrs old)
- 4 implants / animal (Left & Right Humerus & Femur)
- 80 dowels (10 X 15 cm each)
- 6 & 12 week time points
- Rate of osseointegration in a critical bone defect
- Radiographic, biomechanical, micro-CT, & histological analysis

In-vivo Study: Sheep Study - Radiographic Analysis

Preliminary analysis show NO infection and sign of improved fixation and healing

METHOD Faxitron: 33-37 kV ; 3.00 s; 1.00mA

10 | Public | April 2019 | PEEK Conference 2019 | BP, MD, AW, SB, MDCC-HPP

Advanced Processing: 3D Printing (Fused Filament Fabrication)

CELL CULTURE (DAY 1: MOUSE OSTEOBLASTS)

2015/11/25 15:51 NL D4.1 x500 200 um

Injection Molded **VESTAKEEP®** Composite

11 | Public | April 2019 | PEEK Conference 2019 | BP, MD, AW, SB, MDCC-HPP

3D Printed **VESTAKEEP®** Composite

FLEXURAL MODULUS (MPa)

MECHANICAL PROPERTY (VESTAKEEP® COMPOSITE)

VESTAKEEP composites made into filament form and 3D printed shows comparable properties in initial evaluations

Versatile Platform for your applications...

FILAMENTS

Apatite formation via Immersion test

10 mm

In vitro bioactivity testing @ PHMD

POWER TO CREATE

Flexural

- Flexural
 - Radius bending punch: 5mm
 - Radius pad: 5mm
 - Width between supports: 61.44mm
 - Pre-load: 10N
 - Start E-Modulus: 0.05%
 - End E-Modulus: 0.25%
 - Speed, E-Modulus: 2mm/min
 - Test Speed: 2mm/min

- Tensile
 - Clamping length: 50mm
 - Measured length: 20mm
 - Pre-Load: 5N
 - Speed Pre-Load: 1mm/min
 - Speed Modulus: 1mm/min
 - Start E-Modulus: 0.05%
 - End E-Modulus: 0.25%
 - Test Speed: 5mm/min

- Impact
 - Pendelum: 1J
 - Velocity: 3.458m/s

ISO 10993-5 MEM Elusion Test

- Polymers extracted in minimum essential media (MEM) 72 h at 37 °C.
- After 72 cell, media is filtered and added to cell monolayers L-929 (mouse fibroblasts) in the tissue culture plates in triplicate and incubated for additional 24 h.
- Cells are examined and scored based on

controls.

METHOD: POLYMER EXTRACTED IN (MEM) 72 h at 37 °C

- After 72 cell, media is filtered, added to cell monolayers L-929 (mouse fibroblasts) in the tissue culture plates in triplicate and incubated for additional 24 h.
- Cells are examined and scored wrt +ve and -ve controls

EDAX

Contact angle

- Composite materials showed decreased contact angle measurements compared to VESTAKEEP® (Virgin)
- Sample Size: Each composite was tested in triplicate
- Liquid Phase: Water and Diiodomethane were used as the two liquid phases in order to calculate the surface energy of each sample.
- Liquid Dosing: Dosing the liquid phase was automated and allowed to flow from capillary tube and deposit onto the sample surface with minimal gravitational interaction.
- Angle Measurement: Contact angle measurements were acquired automatically when the liquid phase released from the capillary tube and came into contact with the sample surface forming a hemispherical deposition.
- Calculation: Contact angles and subsequent surface energies were calculated within Kruss' ADVANCE software using the OWRK method.

PEEK Printing Parameters

- Filament Material: Vestakeep 4000
- Filament Diameter: 1.75 mm
- Machine: 3NTR A4v3
- Nozzle Diameter: 0.4 mm
- Nozzle Temperature: 410°C
- Print Bed Temperature: 135°C
- Print Bed Material: Glass
- Print Chamber Temperature: 75°C
- Print Speed: 25 mm/s
- Layer Height: 100 µm

